
BBeehhaavviioorr BBaasseedd CCoonnttrrooll

WWeeeekk ##77
PPrrooff.. RRyyaann KKaassttnneerr

OOhh BBeehhaavvee!!

!!A program is all about exercising control
!!Python programs control the computer which

communicates with the Myro
!!When writing robot control programs, the

structure you use to organize the program itself
is a control strategy

!!Programming a robot is specifying automated
control

!!Sensing and control together form Reactive
Control

SSttrruuccttuurriinngg RRoobboott PPrrooggrraammss

!!Structuring robot programs makes designing
behaviors easy

!!Sensor Fusion: Just another buzz name for
Reactive Control or Direct Control

!!In behavior-based control you get away from
sensors and focus the design of your robot
programs based on the number and kinds of
behaviors your robot has to carry out

BBeehhaavviioorr iinn aa MMaazzee

!!The robot in a Maze has three behaviors:
!!Cruise (If there is no obstacle)
!!Avoid Obstacles (If present)
!!Seek Light (If present)

!!Define each behavior as an individual decision
unit

DDeessiiggnn EEaacchh BBeehhaavviioorr

cruiseSpeed = 0.8
turnSpeed = 0.8
lightThresh = 80

def cruise():
is always ON, just move forward
return [True, cruiseSpeed, 0]

def avoid():
 # see if there are any obstacles
 L, R = getIR()
 L = 1 - L
 R = 1 - R
 if L:
 return [True, 0, -turnSpeed]
 elif R:
 return [True, 0, turnSpeed]
 else:
 return [False, 0, 0]

def seekLight():
 L, C, R = getLight()
 if L < lightThresh:
 return [True, cruiseSpeed/2.0, turnSpeed]
 elif R < lightThresh:
 return [True, cruiseSpeed/2.0, -turnSpeed]
 else:
 return [False, 0, 0]

AArrbbiittrraattiioonn SScchheemmeess

!!To control the Robot, one has to decide which
recommendation to chose
!!Priority Assignment: Also called subsumption

architecture
!!Higher the module in the figure, higher the priority

!!By arranging control:
!!Design of each behavior is easy
!!Testing becomes easy
!!More behaviors can be added

NNaammeess aanndd RReettuurrnn VVaalluueess

!!In Python a name can represent anything as its
value: a number, a picture, a function, etc.
!!E.g. : behaviors = [seekLight, avoid, cruise]
!!List named behaviors is a list of function names each

of which denote the actual function as its value
for behavior in behaviors:

 output, T, R = behavior()

!!In each iteration of the loop, the variable behavior
takes on successive values from this list:
seekLight, avoid, and cruise

DDeessiiggnn MMaaiinn aanndd AArrbbiittrraattee

list of behaviors, ordered by priority (left is highest)
behaviors = [seekLight, avoid, cruise]

def main():
 while True:
 T, R = arbitrate()
 move(T, R)

main()

Decide which behavior, in order of priority
has a recommendation for the robot

def arbitrate():
 for behavior in behaviors:
 output, T, R = behavior()
 if output:
 return [T, R]

MMaatthh iinn PPyytthhoonn

!!Python provides a set of libraries so you don’t
have to write them "

!!math library: from math import *
!!ceil(x) Returns the ceiling of x as a float, the smallest

integer value greater than or equal to x
!!floor(x) Returns the floor of x as a float, the largest

integer value less than or equal to x
!!exp(x) Returns ex

FFuunnccttiioonnss iinn MMaatthh

!!log(x[, base]) Returns the logarithm of x to the
given base. If the base is not specified, return the
natural logarithm of x (i.e., log e x)

!!log10(x) Returns the base-10 logarithm of x (i.e.
log 10 x)

!!pow(x, y) Returns xy
!!sqrt(x) Returns the square root of x (!x)

import math
>>> math.ceil(5.34)
6.0

SSuummmmaarryy

!!Behavior based Control

!!Mathematical Functions

