Behavior Based Control

Week #7
Prof. Ryan Kastner

Oh Behave!

< A program 1s all about exercising control

< Python programs control the computer which
communicates with the Myro

<+ When writing robot control programs, the
structure you use to organize the program itself
1s a control strategy

< Programming a robot 1s specifying automated
control

< Sensing and control together form Reactive

Control
= UCSD

Structuring Robot Programs

< Structuring robot programs makes designing
behaviors easy

<+ Sensor Fusion: Just another buzz name for
Reactive Control or Direct Control

< In behavior-based control you get away from
sensors and focus the design of your robot
programs based on the number and kinds of

behaviors your robot has to carry out

= UCSD

Behavior in a Maze

< The robot i1n a Maze has three behaviors:

Cruise (If there 1s no obstacle)
Avoild Obstacles (If present)
Seek Light (If present)

< Define each behavior as an individual decision

unit Light sensors SeekLi g ht Yes, Tseek, Rseek

Yes, Tavoid, Ravoid

IR sensors Avoid

- s

Cruise
Arbitrate g

= UCSD

Design Each Behavior

cruiseSpeed = 0.8 def seekLight():
turnSpeed = 0.8 L, C, R = getLight()
lightThresh = 80 if L < lightThresh:
return [True, cruiseSpeed/2.0, turnSpeed]
def cruise(): elif R < lightThresh:

1s always ON, just move forward

return [True, cruiseSpeed/2.0, -turnSpeed|
return [True, cruiseSpeed, 0]

else:

_ return [False, 0, 0]
def avoid():

see if there are any obstacles
L, R = getIR()
L=1-L
R=1-R
if L:

return [True, 0, -turnSpeed]
elif R:

return [True, 0, turnSpeed]
else:

return [False, 0, 0]

= UCSD

Arbitration Schemes

< To control the Robot, one has to decide which
recommendation to chose

Priority Assignment: Also called subsumption
architecture
< Higher the module 1n the figure, higher the priority

< By arranging control:
Design of each behavior 1s easy
Testing becomes easy

More behaviors can be added

= UCSD

Names and Return Values

< In Python a name can represent anything as its

val

ue: a number, a picture, a function, etc.

E.g. : behaviors = [seekLight, avoid, cruise]

List named behaviors is a list of function names each
of which denote the actual function as its value

for behavior in behaviors:

< In

output, T, R = behavior()
each iteration of the loop, the variable behavior

takes on successive values from this list:
seekLight, avoid, and cruise

= UCSD

Design Main and Arbitrate

list of behaviors, ordered by priority (left is highest)
behaviors = [seekLight, avoid, cruise]

def main():
while True:
T, R = arbitrate()
move(T, R)

main()

Decide which behavior, in order of priority
has a recommendation for the robot

def arbitrate():
for behavior in behaviors:
output, T, R = behavior()
if output:
return [T, R]

= UCSD

Math in Python

< Python provides a set of libraries so you don’t
have to write them ©

< math library: from math import *

ceil(x) Returns the ceiling of x as a float, the smallest
integer value greater than or equal to x

floor(x) Returns the floor of x as a float, the largest
integer value less than or equal to x

exp(x) Returns ¢e*

= UCSD

Functions in Math

<+ log(x[, base]) Returns the logarithm of x to the
given base. If the base 1s not specified, return the
natural logarithm of x (1.e., log ,x)

<+ logl10(x) Returns the base-10 logarithm of x (1.e.
log 19x)

< pow(X, y) Returns x¥

<+ sqrt(x) Returns the square root of x (\/x)

import math
>>> math.ceil(5.34)
6.0

= UCSD

10

Summary

<+ Behavior based Control

<+ Mathematical Functions

= UCSD

11

